TEMEL ELEKTRONİK

DİYOT DOĞRULTUCULAR

Pek çok uygulamada PN bağlantısı DİYOT olarak karşımıza çıkmaktadır. Diyotların pek çok türü olduğu için bunların hepsinin fiziksel çalışma teorilerini anlatmak yerine önce elektriksel özelliklerini sonra da uygulama şeklini sizin sabır sınırlarınız içinde kalmaya çalışarak anlatacağım. Sırası gelmişken bir tavsiyem olacak. Arkadaşlar elektronikteki gelişme çok büyük bir hızla olmaktadır. Bu nedenle her hangi bir malzemenin iç çalışmasını detaylı olarak öğrenmek için zaman kaybetmeyin. Sadece size fikir verecek kadar öğrenmeye çalışın. Elektronik malzemeyi sadece bacakları olan bir kutu olarak kabul edin. Fakat fonksiyonlarını ve ne işe yaradığını öğrenmek için KATALOG KULLANMAYI çok iyi öğrenin. Kataloglarda yer alan sembol, terim ve grafiklerin ne anlama geldiğini ve nasıl kullanılacağını öğrenin.
Diyot biraz önce de söylediğim gibi bir PN bağlantısından oluşur. P tipi yarı iletkenin bulunduğu alana ANOD, N tipi yarı iletkeninin bulunduğu alana KATOD denilir. Üzerinden geçen elektrik akımı anottan katoda doğrudur.
DİYOT DOĞRULTUCULAR

Düşük güçlü diyotlar cam, plastik gibi kılıflara sahip olup yüksek güçlü olanları ısıya dayanıklılığı sağlamak için metal yada seramik kılıflar içindedir. Diyotların fiziksel kılıfları silindirik, dikdörtgen yada şaseye vidalanır türde olabilir. Bütün diyotlarda dış kılıfı üzerinde katot ucunu gösteren bir işaret vardır. Küçük diyotlarda katot ucuna yakın bir bant bulunur. Yüksek güçlü metal kılıflı diyotların metal kılıfları katot olup diğer ucu anod dur. Köprü diyotların içinde dört adet diyot oldugu için üzerlerinde ya uçlarını da gösterecek şekilde sembolleri yada bağlantı volajlarının polariteleri gösteren +, - gibi semboller vardır.
Bir diyodun anodunu pozitif gerilime, katodunu negatif gerilime bağlarsak üzerinden akım geçer (IF). Buna diyoddun düz biaslanması denir. Diyodun adonuna negatif gerilim, katoduna pozitif gerilim verirsek üzerinden akım akmaz (aslında ihmal edilebilir değerde çok az akım akar).
Şimdi diyot karakteristiğini inceleyelim.

Volt - Amper karakteristiği
Volt - Amper Karakteristiği aşağıdaki şekilde gösterilmiştir. Bu eğri diyot düz biaslandığı zaman elde edilen eğridir.
DİYOT DOĞRULTUCULAR
Bu eğriyi elde etmek için gerekli devre şekli aşağıdadır.

DİYOT DOĞRULTUCULAR

Devreyi kurup gerilim kaynağını yavaş yavaş arttırdığımızda okuduğumuz voltaj ve akım değerlerini bir grafik kağıdı üzerinde işaretleyelim. V gerilimi 0V olduğunda VF gerilimi ve IF akımı sıfır olacaktır. Gerilim kaynağını yavaşça artırdığımızda diyot akımı IF çok az olarak artacaktır. VF gerilimi, PN bağlantısının engel gerilimini aşacak büyüklükte olduğu zaman diyot akımı IF ani olarak yükselmeye başlar. Diyot akımının ani olarak yükselmeye başladığı voltaj değerine Cut In gerilimi, OFFSET Gerilimi, Threshold Gerilimi gibi isimler verilir. Bu voltaj değeri örnek olarak germanyum diyotlar için yaklaşık VD=0,2V silisyum diyotlar için yaklaşık VD=0,6V kadardır. VF gerilimi VD geriliminin çok fazla üzerine çıkaracak olursak IF akımı çok fazla artar ve diyot ısınıp bozulur. Bunu önlemek için diyoda akım sınırlayıcı seri bir direnç konabilir yada başka bir anlatımla diyot üzerinden kataloğunda tavsiye edilen değerden fazla akım geçirmemek gereklidir.

Diyot ters biaslandığı zaman VR pratikte akım geçirmez olarak kabul edilir. Gerçekte ise diyodun içindeki kristal yapının sahip olduğu azınlık taşıyıcılarından dolayı çok küçük bir akım IR geçer. IR akımı VR arttığı zaman ve ısı arttığı zaman çok azda olsa yükselir. Bir diyodun ters biasdaki V-I karakteristiği aşağıdaki şekilde gösterilmiştir.

DİYOT DOĞRULTUCULAR

Şekilde de görüldüğü gibi VR voltajı fazlaca yükseltilip VBR voltajı aşıldığı zaman IR akımı aniden ve çok fazla artar. Bu durumda normal bir diyotta VR voltajı azaltılsa bile IR akımı azalmaz. Artık diyot bozulmuştur. Ters gerilimle diyodu bozan bu gerilime VBR KIRILMA (Break Down) voltajı adı verilir. Bir örnekle bunu açıklayalım. 1N4007 diyodunun kataloğuna baktığımız zaman 1000V ve 1Amp. değerlerini görürüz. Buradaki 1000V değeri uygulanabilecek en çok ters gerilim değeridir. Bu, özellikle alternatif akım uygulamalarında önem kazanır. Diyodun iki ucuna doğru bias olarak 1000V verecek olursak geriye biraz kül ve duman kalır. 1 Amper ise diyot üzerinden geçebilecek en çok akım değeridir. Kırılma diyotlarda iki şekilde gerçekleşir. Bu, diyodun kullanım amacına göre fabikada imalat sırasında yapımcıları tarafından dikkate alınır. Birincisi, çığ (Avalanche) kırılması. Diyoda yüksek ters bias uygulandığında diyot üzerinden geçen akım çığ gibi artarak diyodu bozar. Bir üst paragrafta anlatığım olay gerçekleşir.
İkincisi, Zener kırılmasıdır. Zener kırılması özelliğine sahip diyotlarda yüksek ters bias uygulandığında, diyot üzerinden geçen akım artsa bile diyot üzerindeki voltaj sabit kalır. Bu özelliğe sahip diyotlara ZENER DİYOT denilip voltaj düzenleyici (regülatör) olarak kullanılır.

Değerli arkadaşlarım diyotların pek çok uygulaması vardır. Bunların tamamını bu sayfada anlatmak mümkün değildir. Bunlardan bazılarını sırası geldikçe, bazılarınıda hemen anlatmaya başlayacağım. Bazılarınıda sizin yorumlayarak bulmanızı isteyeceğim. Size sorduklarımı klasik öğrenciler gibi bir bilene sormanızı istemem. Sadece anlattıklarımla ve sizin yorumlamanızla bulmaya çalışmanızı istiyorum.

DİYOT UYGULAMALARI


Aslında içinde diyot olan her devre bir diyot uygulaması değildir. Önemli olan orada diyodun ne işe yaradığı, hadi biraz daha ileri giderek devre içindeki diyodun nasıl çalıştığını anlamak olabilir. Bazı devrelerin nasıl çalıştığını anlamak için çok ileri derecede matematik ve telekomünikasyon bilgisi gereklidir. Yazılarımın bazı bölümlerinde elden geldiğince basit olarak, görünüşleri oldukça basit fakat yaptıkları işler enteresan olan bu devreleri de açıklamaya çalışacağım. Elektronikte öyle devreler vardır ki buralarda diyot olmazsa olmaz. Bu devrelerin başında doğrultucular gelir. Aslında Temel Elektronik tamamen teorik olarak anlatılması gerekse de araya bu tür açıklayıcı anlatımlar koyarak okuyucunun ilgisinin çekileceği kanısındayım. Yeni seçtiğim konu başlığına dikkat ederseniz Doğrultucular dedim. Güç Kaynakları demiyorum. Çünkü Güç Kaynakları özel bir anlatım gerektirmektedir. Fakat, özellikle Doğru Akım Güç Kaynaklarının (DC Power Supply) önemli bir kısmını doğrultucular oluşturmaktadır.

Doğrultucular:


Doğrultucular alternatif akımı, örneğin şehir şebekesini doğru akıma çevirmeye yarar. Kullanım yerleri olarak, elektronik devrelerin DC ihtiyaçlarını karşılamak yada güç kaynaklarının ön devresi olmalarını söyleyebiliriz.

Doğrultucuların üç tipi vardır.
1-Yarım dalga doğrultucu
2-Tam dalga doğrultucu
3-Köprü Doğrultucu


Yarım Dalga Doğrultucu:
Doğrultucuyu açıklaman önce bir altın kuralı tekrar hatırlatmak isterim. Bir diyottan akım geçebilesi için anodunun katoduna göre pozitif olması gerekmektedir.
Örneğin silisyum bir diyot için;
Anod: 1V, Katot:0V Akım geçer.
Anod: 10V, Katot:9V Akım geçer.
Anod: -5V, Katot:-6V Akım geçer.
Anod: 5V, Katot:6V Akım geçmez.

Aşağıdaki şekilde bir yarım dalga doğrultucu görülmektedir.
DİYOT DOĞRULTUCULAR

Doğrultucunun a ve b uçları arasına alternatif bir gerilim uygulayalım. Burada bir açıklama yapacağım. Böyle bir şekil gördüğünüzde, t1 ve t2 zamanları arasında a ucu b ucuna göre pozitif, t2 ve t3 zamanları arasında a ucu b ucuna göre negatif olur. t1 ve t2 zamanları arasında a ucu b ucuna göre daha pozitif olur. a ucu pozitif olduğu için diyodun anodu da pozitif olur.b ucu negatif olacağı için c ucu yani diyodun katodu negatif olur. t1 ve t2 zamanları arasında diyodun anodu katoduna göre daha pozitif olacağı için diyot üzerinden bir akım geçer.
Geçen bu akım yük direnci RL nin üst tarafı pozitif, alt tarafı negatif yapar. t2 ve t3 zamanları arasında a ucu b ucuna göre daha negatif olacağı için diyodun da anodu katoduna göre daha negatif olur ve diyot akım geçirmez. Bunun sonucu olarak t2 ve t3 zamanları arasında yük
direnci RL üzerinde bir gerilim oluşmaz. Böylece alternatif akımın her pozitif bölgesi geldiğine yük direnci RL üzerinde aşağıdaki şekilde gösterilen biçimde bir gerilim oluşur.
DİYOT DOĞRULTUCULAR

Şimdi diyebilirsiniz ki "Bu şeklin neresi DC. Tam olarak AC tanımına uyuyor. Yani yönü ve genliği zamana göre değişiyor." Kısmen haklısınız. Dikkat edecek olursanız genliği hep pozitif olarak değişiyor. Şu aradaki boşluklar olmasa tam DC olacak. Şimdi devrenin çıkışına, yük direncine paralel olarak bir kondansatör koyalım.

DİYOT DOĞRULTUCULAR

Diyottan akım geçtiği zamanlarda yani t1 ve t2 zamanları arasında geçen akım hem RL yükünü beslediği gibi aynı zamanda C kondansatörünü doldurur. Diyottan akım geçmeyen t2 ve t3 zamanları arasında kondansatör üzerinde biriken elektrik yavaş yavaş RL yükü üzerinden boşalır. Başka bir değişle t2 ve t3 zamanları arasında RL yükünü besleme işini kondansator üstlenir. Bu şekilde devremizin çıkışındaki dalga şeklide aşağıdaki gibi olur.

DİYOT DOĞRULTUCULAR

Şekilden de görüldüğü gibi dalga şekli DC ye çok yaklaşmış olur. Devredeki kondansatörün değerini arttırarak dalgalanmayı azaltabiliriz. Bu dalgalanmayı örneğin bir yükselteçte vınlama olarak duyabiliriz. Kondansatörü teorik olarak çok arttırmak mümkündür. Fakat yüksek değerli kondansatörler çok yüksek akımlarla dolacağı için çok yüksek akımlara dayanacak diyotlar gerektirir. Bunun yerine doğrulucu devrelerin çıkışlarına regülatör devreleri kullanılır.

Tam Dalga Doğrultucu:
Aşağıdaki şekilde bir tam dalga doğrultucu görülmektedir.
DİYOT DOĞRULTUCULAR

Şekil dikkatli incelenirse iki adet yarım dalga doğrultucudan oluştuğu rahatlıkla görülmektedir. Yarım dalga doğrultucudan hatırlayacağınız gibi diyotlar girişteki sinyalin her pozitif bölümünde iletime geçmektedir. Yani t1 ve t2 zamanları arasında D1 diyodu t2 ve t3 zamanları arasında D2 diyodu iletime geçmektedir. Yük direnci üzerindeki dalga şekli aşağıdaki gibi olur.

DİYOT DOĞRULTUCULAR

Yukarıdaki tam dalga doğrultucunun çıkış dalga şekli ile yarım dalga doğrultucunun çıkış dalga şekilleri arasındaki fark, yarım dalga doğrultucuda olan boşlukları tam dalga doğrultucuda olmayışıdır. Şimdi doğrulucunun çıkış uçları arasına bir kondansatör koyalım.
DİYOT DOĞRULTUCULAR

D1 ve D2 diyotları her iletime geçtiklerinde RL yükünü besledikleri gibi, C kondansatörünü de doldururlar. Diyotlar üzerinden akan akımlar giriş gerilim dalga şeklini izleyecekleri için D1 diyodu girişindeki gerilim t1 zamanından itibaren hızla yükselir, bu yükselme sırasında hem yükü besler hem de C kondansatörünü doldurur. Giriş gerilimi hızla azalmaya başladığında kondansatör yavaş yavaş yük üzerinden boşalmaya başlar. Giriş gerilimi kondansatör üzerindeki gerilimden daha aşağı değere indiği zaman yani D1 diyodunun anodu katoduna göre daha negatif olduğu zaman diyodu artık akım iletmez. Yükü besleme işini kondansatör yüklenir. D1 diyodunun anodundaki gerilim negatif kesime geçtiği zamanda D2 diyodunun anodundaki gerilimde pozitif olarak yükselmeye başlamıştır. D2 diyodunun anodundaki gerilim halen yük üzerinden boşalmaya devam eden kondansatör üzerindeki gerilimden daha pozitif voltaj değerine geldiği zaman D2 diyodu iletime geçer. Hem yükü besleme işini yüklenir hem de kondansatörü yeniden doldurur. Bu işlem art arda devam ederken, çıkışta da aşağıdaki dalga şekli oluşur.

DİYOT DOĞRULTUCULAR